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Prediction of Nonrandom Mixing in Lattice Model with Multi-references
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Abstract—A new lattice theory is proposed to describe nonrandom mixing behavior based on recently developed
lattice model theory by Aranovich and Donohue. The present theory assumes multi-references in order to take into
account interference effects on non-random mixing among pairs. The number of references was obtained from Monte
Carlo simulations for monomer+hole mixtures. Monte Carlo simulation for hole [0]+monomer [1]+monomer [2] muix-
ture shows that this theory is more accurate then Guggenheim’s quasi-chernical theory or the Aranovich-Donohue model
in a wide range of temperatures and densities. Especially, even under the stringent condition of zero interaction energy
parameter €,,=0, the present theory predicts well the extent of nonrandom mixing. For dimer fluid the non-randomness
is calculated using the surface fraction. Here three references was used as in the case of monomer fluid with chain con-
nectivity constraints. Comparison of the theory with Monte Carlo simulation results for dimer-+hole system shows a

good agreement.
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INTRODUCTION

Recently Aranovich and Donohue (AD) developed a new ap-
proach to predict the thermodynamic properties of lattice gas by
generalizing the ideas of Ono and Kondo [Ono and Kondo, 1960]
to treat a lattice m three dunensions [Aranovich et al., 1996]. They
extended the theory to multi-component mixtures of monomers
[Aranovich and Donohue, 1997]. Their expressions for local com-
positions around each species were denved taking mto account mo-
lecular mteractions as well as molecular geometry and lattice struc-
ture. These expressions are simple and as accurate as Guggenheimn’s
quasi-chemical theory (QC) [Guggenheim, 1952] mn predicting non-
random mixing energy. QC theory is widely used in nonrandom
lattice fluid theory [Park et al., 1998; Shin et al., 1995, 1998, 2000
Kim etal, 1998; Keng et al, 1998; Yoo etal, 1997; Yoo and Lee,
1996, 2000]. However, both the theories underestimate the extent
of non-random mixing at low temperatures. It 13 because these the-
ories assume that different pairs do not interfere with one another.

In thus work we propose a new approach which is able to pre-
dict an accurate non-randommness m a wide range of temperatures
and densities. We consider mterference among pairs through multi-
references. Also, the nonrandomness for dimer fluids 15 obtamned
by this approach with chain cormectivity constraints.

NONRANDOM BEHAVIOR IN MONOMER
MIXTURES

We consider a lattice contammng v different kinds of monomers.
Interaction energy for an i—j pair are designated by —¢,. In this study,
unlike the AD model, molecules of type j and k are considered as
references, whereas in the AD model only molecule of type j 13 con-
sidered as reference. The reason thet m this study multi-references
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are employed 13 to take nto account mterferences among pairs. In
real system, all other molecules around a given molecule act as re-
ferences which influence the movement of the molecule. However,
1t 18 impossible to consider all the mfluences i calculation. For the
square-well potential, the nearest neighbor molecules could be con-
sidered as references but the calculation is nearly impossible, simnce
these references could mterference each other. Therefore, we assume
that these references are in positions of being independent of each
other and being able to mfluence the given molecule through their
neighbor molecules. This is an ad hoc procedure. This assumption
fails at low enough temperatures, at which references mterfere with
each other.

Consider exchanging a molecule of type i which belongs to the
first shell of a reference molecule of type j and also belongs to the
second shell of another reference molecule of type k with a mo-
lecule of type { located at a site infinitely distant from both j and k.

If this exchange is assumed to occur at local equilibrium under
constant temperature and volume, the Helmholtz energy does not
change.

AU-TAS=0 (1)

where AU and AS are the energy end entropy changes, respectively,
and T 1s the absolute temperature.
The entropy term is given by

oa_ i &
AS=S,-8,=k ln(%)
By

1
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where 8, 1s the entropy before the exchange, S, 1s the entropy after
the exchange, x/* is the probability of finding a molecule of type i
n the first shell of the reference molecule of type j and also in the
second shell of the reference molecule of type k, and x7" is the pro-
bability of fmding a molecule of type i in the bulk.

Here we consider a simple cubic lattice (coordination number
z=6). We further assume that the compositions in the second and
the higher shells of reference molecules do not differ from those m
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the bulk.
Local energies around molecules i and { before and after the ex-
change are then written as follows:

U, ={(z—06)2x;’§e.-m+eg-+(oc—1)ZXfI.”'e,-m}+ZZx:am )]

Uz :{(z —OL)XXZ:SM +€y+(0¢—1)zxﬁjem}+zzxiesm (4)

AU =(g; —gy) _g,X:(ﬁzm —&;,) +(0¢_1)§.(X:j “X) (B —8m) (5)

where the summation runs over all species (V), and ¢ 1s the num-
ber of references. The first two terms of Eq. (5) are energy changes
when mterference 1s neglected and mn the case of a smgle reference
(0t=1), the above expression reduces to the AD model.

From Egs. (1), (2) and (5) 1t follows that

%zi—?ex [IA(—_I[J:[ ©)

Applymg the following conservation law to Eq. (6),

Sx=1 ™
we obtamn expressions for local composition as

P _oox @®

" Y exp[AUKT]
1

As we assumed that reference molecules j and k are mdepen-
dent of each other, the local composition or the probability of fnd-
ing two molecules in the vicinity of each other, x! can be obtained
as follows:

X=Xxe¥” ©
&
We define nonrandomness factor by

Iy=I%= Ew 10
2% x;

The non-randomness factor, Iy, can be calculated usmg Egs. (8),
(9), and (10), and 1t gives the correct low density limit. In the case
of a completely random mixture, T, s equal to unity. Finally, internal
energy U can be written m the form as

U Zo e
EZEZX,-X]-I}S?- an
s 2%

where N; is the total number of lattice sites.
NON-RANDOM BEHAVIOR IN DIMER MIXTURES

For a dimer in simple cubic lattice structure, the number of ex-
ternal contact pomnts s ten and eight of them have mterference with
segments attracted by bonded segments. A bonded segment can be
regarded as a reference. As a result, these sites of dimers have one
more reference than that of monomer. In other words, dimer has
twokinds of sites. One kind has three references and the other kind
has four references. Here we regard dimer as two components be-
cause of the two kinds of sites.
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Local energies around molecules i and { before and after the ex-
change are then written as follows:

U, =(z—o —515)29:8;,., +e; (- 1)Zel,f.'i8im
+8jBZe{n‘ieim +ZZG:€»., (12)
U,=(z—o _SjB)Ze:etm ey (o —1)29?%.

+85). 06, 2 00E, (13)

AU =(&,—8;) =3 Bn( €1 —€:) +(00—1) D (8 —07) (€1 —€:n)
+8,5 Y (0 —02)(Ep — € (14)

where 8 is the Kronecker delta and §;=1 if the site of type j is in
dimer and has interference with segments attracted by bonded seg-
ments.

Following the procedure of the case of monomer, we obtam ex-
pressions for local surface fractions as

g’ e e:°

e ——— 15
Y6, exp[AU/KT] 3

As we assumed that references j and k are independent with each
other, local surface fractions between two sites, & can be obtained
as follows:

g=(1 *Sjs)gefeﬁ'hrsjae?" (16)
where the Kronecker delta arises from chain connectivity constraints.
COMPARISON WITH SIMULATION

A lattice gas 18 a binary mixture of holes [0] and molecules [1].
€ and €, or &, are set to zero. The number of references, o 1s tested

with 2, 3, and 4. Comparison of the present theory with Monte Carlo
simulation of hole-monomer mixture shows that 0=3 1s appropri-
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Fig. 1. Nonrandomness factor in a lattice gas at &,/kKI'=0.1, 0.3,
0.5.
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ate to simple cubic structure. The predictions of the present theory
with o=4 deviate from Monte Carlo simulation data at low tem-
peratures because of mterferenices of the references. Therefore, in
this study o 13 set to 3. For body-certtered cubic structure or face-
centered cubic structure, o would be above 3, since its larger co-
ordmation number accommodates the more references without in-
terferences each other.
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Fig. 2. Non-randomness factors in a ternary mixture at g,/kT'=
0.5, &,,/KT=0.25, x,=0.3.

(&) & =afE11En, (D) €,,=€y,, (C) &,,7€,,

For a lattice gas, Guggertheim’s quasi-chemical theory (QC) 1s
nearly identical with the AD model The present model is superior
to QC theory and AD model at a low temperature (Fig. 1). It is be-
cause the present theory considers interferences between pairs
through multi-references.

Fig. 2, (a) shows non-randomness when €,, =/€,,€,,. As one
composition is closer to zero, [ and [, from QC theory get to de-
viate from simulation results. Though the present model and the
AD model show the similar values of Ty, and T, the present model
1s slightly better than the AD model in T, It is because the pres-
ent model is more accurate than the AD model at a low tempera-
ture. Fig. 2, (b) shows the case of €,=¢,;. Thus 1s the case that 1-2
mteraction 18 strong. It 15 mteresting that in this case, QC theory 1s
more accurate than n the former case. Fig, 2, (¢) shows the case of
£,,=¢,,. This is the case that 1-2 mteraction 1s weak. Also m this
case, QC theory 1s more accurate than that i the case (a).

Fig. 3. shows non-randomness when €,,=0. It is the case that the
two components do not interact with each other. As hole density
mcreases, the accuracy of QC theory deteriorates. Though the pre-
sent model and the AD model show the similar values of 17, and
T, the present model 1s better than the AD model m I,

Fig. 4. shows non-randomness of dimer fluid. r is the chain
length. Ny and N, are the number of holes [0] and the number of
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Fig. 3. Non-randomness factors in a ternary mixture at €,/KT =
0.5, £,/KI =0.25, &,/KT=0.

(@) x,=0.1, (0) %,=0.5
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Fig. 4. Non-randomness factor in dimer fluids at &,/KI'=0.3, 0.5.

dimers [1], respectively. These non-randomnesses from the three
theories were calculated by using the surface fractions. Though these
theories show smmilar values at a lugh temperature, only the pre-
sent model is accurate at a low temperature.

CONCLUSIONS

We propose a new approach which can accurately predict the
extent of non-random mixing in a lattice fuid model. This approach
18 a modification of recent lattice model theory of Aranovich and
Donohue, which employs multi-references. It has the effect of con-
sidering interferences among molecules and leads to an accurate
prediction of non-randomuess even at low temperatures. Dimer flud
has one mere reference than that of monomer flud. It 1s because a
neighbormg segment exists. In addition, chain commectivity con-
stramt 1s considered. Non-randomness predicted by the present mod-
el is more accurate than those from quasi-chemical theory or the
Aranovich-Donochue model.

ACKNOWLEDGMENT

This work was supported by the BK21 project of Ministry of Edu-
cation and the National Research Labaratory (NRL) Program of
Korea Institute of Science & Technology Evaluation and Planmning.

NOMENCLATURE

: the number of species
: the number of total lattice sites
: chain length
: the energy and entropy changes
. temperature
: configurational energy
¥ the probability of finding amolecule of type i in the first shell
of the reference molecule of type j and also in the second
shell of the reference molecule of type k
”  : the probability of finding a molecule of type i in the bulk
z : coordination number
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Greek Letters

o : the number of references

§z :Kronecker delta
8,z=1, if the molecule of type j is dimer and the site has a
neighboring bonded segment
8,;=0, otherwise

g, interaction energy for i-j pair
T, :non-randomness factor of i—j
v - the number of all species

6 : surface fraction

REFERENCES

Aranovich, G. L. and Donohue, M. D., “A New Model for Lattice Sys-
tems J. Chem. Phys., 105, 7059 (1996).

Aranovich, G. L., Hocker, T., Wu, D. W. and Donohue, M. D., “Norran-
dom Behavior in Multicomponent Lattices Mixtures: Effects of Sol-
ute Size and Shape” J. Chem. Phys., 106, 10282 (1997).

Guggenheim, E. A, “Mixtures,” Oxford University Press, London
(1952).

Kang, ] W, Kim, I. Y, Yoo, K-P. and Lee, C. S,, “Excess Enthalpy
and Vapor-Liquid Equilibrium Prediction using Non-Random Lattice
Fluid Equation of State]’ Ftuid Phase E quilibria, 150, 199 (1998).

Kim, I., Joung, K. C., Hwang, S., Huh, W, Lee, C. 8. and Yoo, K.-P,
“Measurement of Vapor Sorption Equilibria of Polymer Solutions
and Comparative Correlation by Ge-Models and Lattice Equations
of State” Korean J. Chem. Eng., 15,199 (1998).

Ono, S. and Kondo, S., “Molecular Theory of Surface Tension in Lig-
uids” Springer, Gottingen (1960).

Park, B. H,, Yeom, M. S., Yoo, K.-P. and Lee, C. S, “A Group Contri-
bution Method Based on Nonrandom Lattice-Hole Theory with
Molecular Bulkiness]’ Korean J. Chen. Eng., 15,246 (1998).

Shin, H. Y., Yoo, K.-P. and Lee, C. S, “Calculation of Complex Phase
Equilibria in the Critical Region of Flud Mixture Based on Multi-
Fluid Lattice Equation of State]” Korean J. Chem. Eng., 17, 420
(2000).

Shin, H. Y., Yoo, K.-P, Lee, C. S, Tamura, K. and Arai, Y., “Rigorous
and Simplified Lattice-Hole Equation of State for Calculating Spe-
cific Volumes of Common Pure Polymers}” Kovean J. Chem. Eng.,
15, 15 (1998).

Shin, M. S., Yoo, K. P.and You, S. S., “A New Nonrandom Lattice Fluid
Maodel and Its Simplification by Two-Liquid Theory for Phase Equi-
libria of Complex Mixtures;” Znz. J. Thermophysics, 16, 723 (1995).

Yoo, K. P. and Lee, C. S., Fluid Phase Equilibria, “A New Lattice-
Fluid Equation of State and Its Group Contribution Application
for Predicting Phase Equilibria of Mixtures)” Bufl. Korean Chen.
Soc., 117, 48 (1996).

Yoo, K. P, Shin, H. Y. and Lee, C. S., “Approximate Nonrandom Two-
Fluid Lattice-Hole Theory. Thermodynamic Properties of Real Mix-
tures?’ Bull. Koreann Chem. Soc., 18, 841 (1997).

Yoo, K. P, Shin, H. Y. and Lee, C. S., “Approximate Nonrandom Two-
Fluid Lattice-Hole Theory. General Derivation and Description of
Pure Fluids)’ Bufl Korean Chem. Soc., 18, 965 (1997).

Yoo, K. P.and Lee, C. S., “Rediscoverning the Lattice-Fluid Theory for
Phase Equilibria of Complex Mixtures Rediscovering the Lattice-
Fluid Theory for Phase Equilibria of Complex Mixtures,” Korear J.
Chem. Eng., 17, 257 (2000).



